15 research outputs found

    Why metabolic systems are rarely chaotic

    Get PDF
    One of the mysteries surrounding the phenomenon of chaos is that it can rarely be found in biological systems. This has led to many discussions of the possible presence and interpretation of chaos in biological signals. It has caused empirical biologists to be very sceptical of models that have chaotic properties or even employ chaos for problem solving tasks. In this paper, it is demonstrated that there exists a possible mechanism that is part of the catalytical reaction mechanisms which may be responsible for controlling enzymatic reactions such that they do not become chaotic. It is proposed that where these mechanisms are not present or not effective, chaos may still occur in biological system

    Harmonic Versus Chaos Controlled Oscillators in Hexapedal Locomotion

    Get PDF
    The behavioural diversity of chaotic oscillator can be controlled into periodic dynamics and used to model locomotion using central pattern generators. This paper shows how controlled chaotic oscillators may improve the adaptation of the robot locomotion behaviour to terrain uncertainties when compared to nonlinear harmonic oscillators. This is quantitatively assesses by the stability, changes of direction and steadiness of the robotic movements. Our results show that the controlled Wu oscillator promotes the emergence of adaptive locomotion when deterministic sensory feedback is used. They also suggest that the chaotic nature of chaos controlled oscillators increases the expressiveness of pattern generators to explore new locomotion gaits

    A mathematical model for the intracellular circadian rhythm generator

    Get PDF
    A mathematical model for the intracellular circadian rhythm generator has been studied, based on a negative feedback of protein products on the transcription rate of their genes. The study is an attempt at examining minimal but biologically realistic requirements for a negative molecular feedback loop involving considerably faster reactions, to produce (slow) circadian oscillations. The model included mRNA and protein production and degradation, along with a negative feedback of the proteins upon mRNA production. The protein production process was described solely by its total duration and a nonlinear term, whereas also the feedback included nonlinear interactions among protein molecules. This system was found to produce robust oscillations in protein and mRNA levels over a wide range of parameter values. Oscillations were slow, with periods much longer than the time constants of any of th
    corecore